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Abstract 
 
We evaluate the degree of bias in teacher value-added estimates from Los Angeles using a 

“teacher switching” design first proposed by Chetty, Friedman, and Rockoff (2014a). We have 

three main findings. First, as they found in New York City, we find that value-added is an 

unbiased forecast of teacher impacts on student achievement in Los Angeles, and this result is 

robust to a range of specification checks. Second, we find that value-added estimates from one 

school are unbiased forecasts of the teacher’s impact on student achievement in a different 

school, even schools with very different mean test scores. Finally, we find statistically significant 

differences in average effectiveness of teachers by student race, ethnicity and prior achievement 

scores that expand gaps in achievement, rather than close them. 

 

 
                                                            
1 We thank Raj Chetty for helpful discussions and comments, and for providing the code used in the CFR study. 
2 Thomas J. Kane served as an expert witness for Gibson, Dunn, and Crutcher LLP to testify in Vergara v. 
California.   Although the research was done independently of the litigation, his paid testimony referred to several of 
the findings from this paper. 
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Introduction 

For nearly half a century, economists have been using panel data to estimate the impacts 

of teachers and schools on student achievement (e.g., Murnane, 1975; Hanushek, 1971).  

Because students are sorted to teachers based on student characteristics (such as achievement) 

which vary over time, analysts have had to rely on the short list of covariates available in 

education data systems (e.g., prior test scores, student demographics, indicators of free lunch 

program participation and grade retention) to capture the relevant characteristics used to sort 

students to teachers and schools (Rothstein, 2010).  As such methods migrate from research into 

policy, the statistical assumptions underlying them are facing greater scrutiny. 

In the past few years, various teams of researchers have been testing the predictive 

validity of teacher and school effect estimates.  One widely cited study, Chetty, Friedman and 

Rockoff (2014a; hereafter CFR), used data from New York City to predict changes in 

achievement by school and grade based on changes in the average value-added of the teachers 

assigned to those schools and grades.3  If a teacher with a large positive value-added estimate 

leaves a school and joins a new one, one would expect achievement to rise in their new school 

and to fall in their former school—that is, if the teacher they are replacing is less effective and 

the estimates were truly attributable to the teacher and not the unmeasured characteristics of the 

students they left behind.4  CFR could not reject the hypothesis that the value-added estimates 

were unbiased predictors of changes in student achievement.  

                                                            
3 CFR (2014a) do not identify the school district.   However, during testimony in Vergara v. California, the authors 
subsequently identified the district as New York City.  
4 To avoid measuring achievement with the same data used to predict achievement, CFR (2014a) only used value-
added data from outside the two-year window created by any annual change.   
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In this paper we use the same empirical design as CFR to replicate and extend their 

analysis. Our analysis is based on seven years of data from Los Angeles Unified School District 

on over 58,000 teachers and half a million students. We have three main findings.   

First, similar to CFR, we find that the teacher-value-added estimates are valid predictors 

of student achievement when teacher assignments change.  We cannot reject the hypothesis that 

there is no forecast bias, with a confidence interval of ±9%.  The heterogeneity in teacher effects 

is considerably larger in Los Angeles than in New York City.  The consequences for math or 

English achievement of being assigned a top rather than a bottom quartile teacher in Los Angeles 

are nearly twice as large as CFR found in New York. We further explore the robustness of this 

result to a number of critiques raised by Rothstein (2014), and subsequently responded to by 

CFR (2014c). Using data from North Carolina, Rothstein also could not reject the hypothesis of 

unbiasedness of value-added with a confidence interval of ±5%.  However, he found the results 

sensitive to the handling of missing value-added data. Our results in Los Angeles are not 

sensitive to various reasonable ways of handling missing value-added data. Rothstein also 

questioned the quasi-experimental design because he found that changes in the value-added of 

teachers in a grade were associated with changes in students’ prior-year test scores (a “placebo” 

test). CFR (2014c) argued that these findings were driven by a mechanical relationship, resulting 

from the fact that prior test scores and the value-added estimates are sometimes estimated with 

the same data.  We replicate the key analyses in CFR (2014c) and Rothstein (2014) and find 

similar results. In particular, while the main findings are robust to a number of specification 

changes, the placebo test is not in a way that suggests a mechanical relationship.  

 Second, we decompose value-added estimates into separate components reflecting a 

teacher’s performance in the same school versus their performance in different schools, and test 
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for whether the predictive validity of value-added estimates differs for evidence drawn from the 

same school or from a different school.  Recent work by Jackson (2013) has suggested that a 

given teacher’s effectiveness may vary from school to school, depending upon the quality of the 

match between the teacher and the school.  We cannot reject the hypothesis that value-added data 

is an equally valid predictor whether from the same school, a similar school (as measured by 

school mean test scores) or a different school.   

  Finally, unlike CFR, we find statistically significant differences in average effectiveness 

of the teachers by student race/ethnicity and by prior achievement scores.  Teachers differ more 

in Los Angeles than in the New York, and the allocation of teacher effectiveness in Los Angeles 

seems to expand gaps in achievement by race/ethnicity and prior achievement, rather than close 

them. Importantly, unlike CFR, our analysis of the distribution of teacher effects takes teacher 

experience into account.  Many teachers who are effective later in their careers struggle in their 

early years of teaching, and we find that minority and low-achieving students are more likely to 

be assigned to novice teachers in Los Angeles. Therefore, it is important to allow for teaching 

quality to vary by level of experience when estimating the impact of this student-teacher 

assignment pattern.  We find that, in Los Angeles, disparity across students in the combination of 

experience effects and teacher effects (adjusted for experience) are nearly twice as large as the 

teacher effects alone. 

 

Testing the Validity of Non-Experimental School and Teacher Effects  

 In 1986, Robert J. LaLonde compared non-experimental estimates of a training 

program’s impact against the “gold standard” of a randomly assigned comparison group.  The 
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earnings impacts generated using the non-experimental control groups were quite different from 

those based on the randomized control group.5  LaLonde’s findings have led to a generalized 

skepticism of non-experimental methods in the study of education and training impacts.  

 However, it would be inappropriate to generalize the findings to all educational 

interventions. For instance, the process by which students are sorted to teachers (or schools) and 

the data available to account for such sorting are quite different from that faced by evaluators 

when welfare recipients choose a training program.  While the reasons underlying a welfare 

recipient’s choice generally remain hidden to a researcher, it is possible that school data systems 

contain the very data that teachers or principals use to assign students to teachers.  Of course, 

many other unmeasured factors matter for student achievement—such as student motivation or 

parental engagement.  But as long as those factors are also invisible to school principals and 

teachers when they are making teacher assignment decisions, our inability to control for them 

would lead to imprecision, not bias.6 

 Unfortunately, given the practical difficulty of randomly assigning students to teachers or 

to schools, opportunities to replicate LaLonde’s comparison of experimental and non-

experimental estimates have been rare—until recently.  For instance, several recent papers 

exploit school admission lotteries to compare estimates of the impact of attending a charter 

school using the lottery-based comparison groups as well as statistical controls to compare 

charter school and traditional public school students.  Abdulkadiroglu et al. (2011) and Angrist, 

Pathak, and Walters (2013) find similar estimates of the impact of a year in a Boston area charter 

school whether they use the randomized control group or statistical controls to compare the 
                                                            
5 Dehejia and Wahba (1999) later demonstrate that non-experimental methods perform better when using propensity 
score methods to choose a more closely matched comparison group. 
6 More problematic would be student- or parent-driven selection of teachers, although the extent of such behavior is 
hard to measure directly. 
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performance of students at charter and traditional schools.  Deutsch (2012) also finds that the 

estimated effect of winning an admission lottery in Chicago is similar to that predicted by non-

experimental methods.  Deming (2014) finds that non-experimental estimates of school impacts 

are unbiased predictors of lottery-based impacts of individual schools in a public school choice 

system in Charlotte, North Carolina.    

 To date, there have been five studies which have tested for bias in individual teacher 

effect estimates.  Four of those—Kane and Staiger (2008), Kane, McCaffrey, Miller and Staiger 

(2013), Chetty, Friedman and Rockoff (2014) and Rothstein (2014) —estimate value-added for a 

given teacher in one period and then form empirical Bayes predictions of their students’ expected 

achievement in a second period.  The primary distinction between the four studies is the source 

of the teacher assignments during the second period.  In Kane and Staiger (2008), 78 pairs of 

teachers in Los Angeles working in the same grades and schools are randomly assigned to 

different rosters of students, which had been drawn up by principals in those schools. The 

authors cannot reject the hypothesis that the predictions based on teachers’ value-added from 

prior years provide unbiased forecasts of student achievement during the randomized year.  

However, given the limited sample size, the confidence interval is large, ±35% of the predicted 

effect. 

 Kane, McCaffrey, Miller and Staiger (2013) measure teachers’ effectiveness using data 

from 2009-10 and then randomly assign rosters to 1,591 teachers during the 2010-11 school year.  

The 2009-10 measures include a range of measures, such as value-added, classroom observations 

and student surveys.  The teachers were drawn from six different school districts:  New York 

City (NY), Charlotte Mecklenburg (NC), Hillsborough County (FL), Memphis (TN), Dallas 

(TX) and Denver (CO).  They cannot reject the hypothesis that the predictions based on 2009-10 
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data are unbiased forecasts of student achievement in 2010-11, following random assignment.  

The confidence interval for potential bias is ±20%. 

 Rather than use random assignment, CFR exploit naturally occurring variation in teacher 

assignments as teachers move from school to school and from grade to grade.  Using value-

added estimates from other years, they predict changes in scores in a given grade and school 

from t-1 to t based on changes in teacher assignments over the same time period.  Teacher 

assignments could change in several different ways:  (1) even if the same teachers remain in a 

school, the proportion of children taught by each teacher could change from t-1 to t; (2) a teacher 

could exit or enter from a different school; or (3) a teacher could exit or enter from a different 

grade in the same school.  CFR use all three sources of variation to generate their estimates.  

Each time teacher assignments change from year t to year t-1, CFR have a new opportunity to 

compare actual and predicted changes in student achievement.   

Because they observe many teacher transitions over multiple years, the precision of the 

estimates in CFR is considerably higher than with either of the previous random assignment 

studies.  Not only can they not reject the hypothesis that the predictions are unbiased, but the 

confidence interval on their main estimate is much smaller, ±6%. 

Rothstein (2014) replicates the CFR findings using data from North Carolina.  Using the 

same methodology, Rothstein cannot reject the hypothesis of unbiasedness with a confidence 

interval of ±5%. 

Glazerman et al. (2013) are the only team so far to use random assignment to validate the 

predictive power of teacher value-added effects between schools.  To do so, they identify a group 

of teachers with estimated value-added in the top quintile in their state and district.  After 
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offering substantial financial incentives, they find a subset of the high value-added teachers 

willing to move between schools and recruit a larger number of low-income schools willing to 

hire the high-value-added teachers.  After randomly assigning the high value-added teachers to a 

subset of the volunteer schools, they find that student achievement rose in elementary schools, 

but not in middle schools.  Unfortunately, while their results suggest that teacher value-added 

estimates have the right sign (at least in elementary schools), they do not investigate whether the 

magnitude of the impacts are as expected (that is, they could not gauge the magnitude of 

potential bias).   

Methods 

Like prior value-added studies, we use a set of control variables generally available in 

school district administrative data (e.g., prior student achievement, student demographics, 

average characteristics of students in the class and school average characteristics).  However, 

following CFR, our value-added model differs from prior studies in two key ways:  

First, we allow for drift over time as we forecast teacher value-added.  Most value-added 

models assume—either implicitly or explicitly—that a teacher’s underlying effectiveness is 

fixed.  Any fluctuations in measured effectiveness are assumed to reflect measurement error, not 

changes in underlying effectiveness.  CFR find evidence to suggest that a teacher’s effectiveness 

has two components:  a fixed component and a component representing a true change in 

effectiveness from one period to the next.  As a result, we allow for a similar evolution a 

teacher’s effectiveness in Los Angeles (although, as we note below, there is a greater correlation 

between teacher effect measures over time in Los Angeles than in New York City.) 
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Second, we use only within-teacher variation in student, classroom and school-level traits 

when estimating the influence of those traits on student achievement.  Most prior work on value-

added models has used a combination of within-teacher and between-teacher variation in these 

background control variables to adjust for their effects on student achievement.  The 

disadvantage of using both sources of variation is that it becomes impossible to disentangle 

systematic differences in teacher quality from the influence of the background controls 

themselves.  In other words, when adjusting for student race including between-teacher variation, 

one is implicitly attributing to student race any possible differences in teacher quality associated 

with student race.  However, by focusing on variation in student traits within teacher and by 

holding the teacher constant, we preserve the ability to study the relationship between estimated 

teacher effects and student traits.   

 Following CFR, we also predict a teacher’s impact on students in four steps:  First, we 

estimate the relationship between student test scores and observable characteristics within 

teachers, using an OLS regression of the form,  

௜௧ܣ (1)
∗ ൌ ߚ ௜ܺ௧ ൅ ௝ߙ ൅  .௜௝௧ߝ

௜௧ܣ
∗  represents student i’s test score in year t (standardized to have a mean of zero and 

standard deviation of one), ௜ܺ௧ includes (1) indicators for gender, race/ethnicity, free and reduced 

price lunch eligibility, new to school, homelessness, mild or severe special education 

classification, English language learner classification and prior retention in the current grade; (2) 

student test scores in both subjects in the prior year (interacted with grade); (3) means of all the 

demographics and test scores at the school and grade level; and (4) grade-by-year fixed effects.  

Importantly, ߙ௝ is the fixed effect for teacher j. 
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Second, we calculate the residual student test scores after adjusting for students’ 

observable characteristics using the following equation:   

௜௧ܣ (2) ൌ ௜௧ܣ	
∗ െ መߚ ௜ܺ௧. 

The residual student test scores, ܣ௜௧, include the estimated teacher fixed effects, ߙఫෝ .  We 

generate the classroom-level residual, ̅ܣ௖௧, as the mean of the student-level residuals, ܣ௜௧, in each 

classroom taught by a given teacher.  We then estimate a teacher’s effect in a given year, ̅ܣ௝௧, as 

the precision-weighted average of their classroom-level residuals (with classrooms subscripted 

by c below):  

௝௧ܣ̅ (3) ൌ ∑ ௖௧௖ݓ  ,௖௧ܣ̅

where the precision-weights, ݓ௖௧, are the inverse of the variance of the estimate of a teacher’s 

effect from class c. 

  Third, we estimate drift in value-added flexibly by estimating a different parameter for 

each possible time lag s (i.e., school year).  In effect, we allow an estimate from five years in the 

past to have less predictive value than an estimate from one year in the past.  In such cases, the 

weight attached to a time lag of length s, ߛ௦, will be smaller when the absolute value of s is 

larger.7 See CFR (2014a) for details on how the weights, ߛ௦, are constructed. 

Fourth, we put all of these pieces together to estimate different teacher effects, ̂ߤ௝௧, for 

each year t and teacher j, using a “leave-out” approach.  Let ܣԦ௝
ି௧indicate the vector of estimates 

from years other than year t.  Then teacher j’s leave-out predicted impact in year t, ̂ߤ௝௧
ି௧, is simply 

                                                            
7 The teacher fixed effect approach used in prior studies would have granted equal weights to every past year when 
predicting a teacher’s effect next year. 
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the weighted average of the residuals from years other than year t, with the weights derived from 

the drift parameters, ߛ௦:   

௝௧ߤ̂ (4)
ି௧ ൌ Ԧ௝ܣᇱߛ

ି௧ 

Data 

For this paper, we use information on student demographic characteristics, test scores, 

and school and teacher assignments from administrative data provided by Los Angeles Unified 

School District.  We use data for 7 academic years, from the 2004-05 through the 2010-11. 

Before imposing sample restrictions, we observe roughly 1.1 million children and 3.9 million 

student-year combinations in grades 3-8.  We observe 58 thousand unique teachers and 280 

thousand teacher-year combinations in grades 3-8.   

Test scores:  For those students with a baseline test score in one year, we observe a 

follow-up test score for 80% of students in the following spring (this does not include 8th graders 

or the last year, spring 2011).  We standardize students’ scaled test scores to have mean zero and 

standard deviation of one by grade and year. 

Student Demographics:  We use administrative data on a range of other demographic 

characteristics for students.  These variables include gender, race/ethnicity (Hispanic, white, 

black, other or missing), indicators for those ever retained in grade, those eligible for free or 

reduced price lunch, those designated as homeless, participating in special education, and 

English language learner status.    

School and Teacher Assignment Information: We use administrative data indicating 

students’ grades, schools, and teachers of record (for math and English) in each school year.  We 
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also use the administrative data to derive an indicator for students new to a school and retained in 

the current grade. 

Sample Restrictions:  To construct an analysis sample, we use a series of sample 

restrictions that closely mirror other value-added work.  First, we include students in grades 3-8 

who could be linked to a math or English teacher.  Second, we exclude the 2% of observations in 

classrooms where more than 50% of the students were identified as special education students.  

Third, we remove classrooms with extraordinarily large (more than 45) or extraordinarily small 

(less than 5) enrolled students, which excludes 1% of students with valid scores.   

After these sample restrictions, we have 3 million observations with information on 

teacher assignments, test score gains and demographics.  We combine all of these data elements 

together into one dataset with one row per student per subject (math or English) per school year.  

Each row contains the student test score (both current and prior year), student demographic 

information, and school and teacher assignment information.  

Sample Statistics from Combined Data: We report sample statistics for relevant data and 

student characteristics in Table 1.  The first two rows present information on the number of 

unique students and classrooms.  We observe 591,803 unique students, with an average of 5.08 

subject-school years. We observe 141,853 unique classrooms, with an average class size of 24.37 

students. 

We standardize student test scores on the full sample of students (before any sample 

restrictions), including special education students.  As a result, the analysis sample is slightly 

higher achieving and slightly less diverse than the population.  The average standardized test 

score is slightly larger than zero, .13, and the standard deviation is slightly smaller than one, 
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.983.   A high percentage of students (78%) in Los Angeles are eligible for free and reduced-

priced lunch.  There is also a high percentage of Hispanic students (75%) and high percentage of 

students who have limited English proficiency (28%). 

Heterogeneity and Drift in Teacher Effects 

Our estimate of the heterogeneity in teacher effects is considerably larger in Los Angeles 

than CFR’s estimate for New York City.  CFR find that a standard deviation in teacher impacts is 

equivalent to .124 and .163 student-level standard deviations in achievement in elementary 

school English and math respectively, and .079 and .134 in middle school (CFR 2014a, Table 2, 

Panel B).  The comparable estimates in Los Angeles are .189 and .288 in elementary English and 

math respectively, and .097 and .206 in middle school English and math. There are many reasons 

that variance in teacher effectiveness might be higher in Los Angeles than in other urban district. 

In particular, Los Angeles has traditionally had a more centralized hiring process, which gives 

principals less authority in selecting new hires and has a shorter probationary period before 

teachers get tenure.  It could also be that their testing outcomes are more sensitive to teacher 

influences.  

In Figures 1 and 2, we present the distribution of predicted teacher effects for elementary 

and middle school teachers respectively.  The distribution of predicted teacher effects is 

somewhat narrower than the underlying differences in teacher effects reported in the paragraph 

above, because the prediction method “shrinks” each teacher’s estimate toward zero.  

Nevertheless, the implied difference in effectiveness between the most effective and least 

effective teachers is quite large, especially in mathematics.  For instance, a teacher at the 75th 

percentile or above is predicted to raise achievement in his or her class by .3 student-level 
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standard deviations, relative to the average classroom in elementary math.  Conversely, a teacher 

at the 25th percentile is predicted to reduce student achievement by a similar amount.   

 CFR (2014a) report comparable figures to Figures 1 and 2 in their Appendix Figure 1.  

The standard deviation of predicted teacher impacts in the district they studied is .080 and .116 in 

elementary English and math respectively, and .042 and .092 in middle school.  Assuming a 

normal distribution, the predicted impact of being assigned a top quartile teacher in elementary 

math is .145 standard deviations, roughly half as large as the comparable estimate in Los 

Angeles. 

 In Figure 3, we report the correlations between the weighted mean achievement residuals 

by teacher and year, ̅ܣ௝௧, at various time lags.  There is considerably less drift in the teacher 

effect estimates in Los Angeles relative to New York City.  For example, in elementary math, we 

find a correlation in teachers’ weighted-mean residuals one year apart of .66.  The comparable 

figure in CFR is .43.  The higher correlations over time likely reflect the greater heterogeneity in 

underlying teacher effects in Los Angeles. 

Changes in Student Achievement following Changes in Teacher Assignments 

Following CFR, we test the predictive validity of the value-added estimates by studying 

the changes in achievement in each school and grade corresponding with changes in teacher 

assignments.  More precisely, we predict the change in average student achievement given 

changes in the weighted average of teacher value-added in that school and grade.  The average 

predicted value-added, ܳ௦௚௦௧, is simply the weighted average of the predicted teacher effects, 
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௝௧ߤ̂
ିሼ௧,௧ିଵሽ, for the teachers assigned to that grade and subject, weighted by their enrollments.8  The 

change from year t-1 to t is ∆ܳ௦௚௦௧. We calculate the change in average raw test scores at each 

school-grade-subject-year cell from year t-1 to t, ∆ܣ௦௚௦௧∗ , and then estimate the following 

equation: 

∗௦௚௦௧ܣ∆ (5) ൌ ଴ߚ	 ൅ ଵ∆ܳ௦௚௦௧ߚ ൅  ௦௚௦௧ߝ

In Table 2, column 1 is the preferred specification from CFR (2014a).  They report a 

parameter estimate of .974 and a standard error of .033, which implies a forecast bias of -2.6% 

(100-97.4) and a confidence interval of ±6.5%.  Our estimate in column 1 is quite similar, 1.030, 

and implies a forecast bias of 3.3% (103.3-100).  The confidence interval around the estimate is 

±8.6% (±1.96*.044).   

Figure 4 presents the graphical version of the results in column 1.  First, we sort each 

school-grade-subject-year cell into one of 20 groups, based on the magnitude of the predicted 

change in value-added, ∆ܳ௦௚௦௧.  Then we calculate the average change in actual scores in each of 

the 20 groups, ∆ܣ௦௚௦௧∗ .  In Figure 4, we present the scatter plot of the means of predicted change 

in scores and actual change in scores for all 20 groups.  Two facts are evident.  First, the changes 

in actual scores match the changes in predicted scores throughout the distribution.  Second, 

especially at the tails, the magnitude of the change is quite large.  Figure 4 reports changes in 

average scores for whole grade levels within a school.  In 10% of all school-grade-subject cells, 

we would have predicted changes in scores of ±.15 standard deviations based simply on changes 

in the teacher assignments in those school-grade-subject cells (5% of cells predicted to have an 

                                                            
8 Since this section focuses on changes from t-1 to t, we only used the teacher effect estimates for the years outside 
the two-year window, t to t-1, to form the predictions. 
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increase of .15 and 5% with a decrease of .15 standard deviations).   The results suggest that the 

average change in actual achievement roughly corresponded with those predictions.  

Columns 2 and 3 of Table 2 report results separately for middle school grades (6-8) and 

elementary grades (4 and 5) respectively.  The coefficients for middle school and elementary 

school, 1.122 and .996, are not statistically distinguishable from one.   

The last two columns of Table 2 report various robustness checks.  One concern is that 

teacher turnover may coincide with other changes in a school.  As a result, instead of imposing 

an assumption that the year effects are common across schools, column 4 allows for different 

year effects by school.  In effect, these estimates are only relying on differential changes in 

scores and predicted value-added by grade and subject within a school, since the mean change in 

scores and predicted value-added that is shared across multiple grades and subjects is being 

subtracted out. The coefficient is .963 with confidence interval of ±9%.  Column 5 adds controls 

for changes in the predicted mean value-added of teachers in the school-grade-subject in the 

prior and subsequent years.  The coefficient is .942 with a confidence interval of ±11%.  In all of 

these specifications, the confidence interval contains one and does not include zero.9   

Teachers with Missing Value-Added 

Throughout most of their analysis, CFR exclude from consideration classrooms taught by 

teachers with no value-added estimate outside of the two-year window.  In Table 2, we have 

applied the same restriction.  However, as a robustness check, CFR include teachers with 

                                                            
9 In addition to controls for school-by-year fixed effects and lead and lag changes in teacher value-added, CFR 
include a specification that controls for the change in scores for the same subject and other subject in the prior year.  
We also replicated this finding, but do not report the changes in Table 2, since it is not appropriate to include this 
control, as we discuss in the section on the use of lagged scores below.  For comparative purposes, when estimating 
a model with school-by-year fixed effects, controls for lead and lagged changes in teacher value-added, and lagged 
score controls, we estimate a coefficient on changes in mean across cohort value-added of .87, with a confidence 
interval of ±7%. 
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missing value-added data, imputing their value-added to be zero (i.e., attributing to the missing 

teachers the mean teacher effectiveness).  When doing this, the coefficient on predicted 

achievement falls to .877, an estimate which is statistically different from one (CFR 2014a, 

Table 5, column 2).  The authors interpret the decline as being attributable to measurement error.   

In Table 3, we report the preferred specification from CFR in column 1 and then apply 

several alternative approaches to imputing value-added for those with missing values.  First, we 

assign the whole-sample mean effectiveness, 0, to any teacher with missing value-added.  As 

reported in column 2, we find an estimate of .993, with a confidence interval of ±10%.  In other 

words, the estimates in Los Angeles are less sensitive to the assumption of average value-added 

than in the district studied by CFR.   For column 3, we re-estimate equation (1) including 

controls for teacher experience, with indicators for each single year of experience from one 

through nine years and one additional indicator for teachers with 10 or more years of experience.  

Therefore, in addition to ̂ߤ௝௧
ିሼ௧,௧ିଵሽ, we can use teaching experience to impute value-added for 

those with missing ̂ߤ௝௧
ିሼ௧,௧ିଵሽ.  The coefficient is .996 with a confidence interval of ±9%.  Next, 

we exploit the fact that many teachers with missing value-added outside the two-year window 

had value-added estimates during the window (for example, early career teachers who leave 

before their third year would have value-added in their first two years but would necessarily have 

missing two-year leave-out value-added for all years).  The grand mean value-added for these 

teachers is -.049 during the two-year window.   Therefore, in column 4 of Table 3, we use -.049 

to impute value-added for missing teachers.  The coefficient is essentially unchanged at .998 

with a confidence interval of ±10%.  Finally, in column 5 we perform the simple exercise of 

restricting the sample to only include cells where no teachers are missing two-year leave-out 

value-added estimates.  Again, the coefficient remains substantially unchanged at .973 with a 
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confidence interval of ±9%.  Based on these findings, we conclude that the treatment of teachers 

with missing value-added has little effect on the estimates in Los Angeles. 

Additional Robustness Checks 

 Table 4 presents two more robustness checks.  The first two columns add changes in 

predicted effectiveness of teachers in the other subject in a grade level and school.  Changes in 

predicted effectiveness in other subjects capture underlying changes in the quality of teaching in 

the school, such as might occur with changes in school leadership.  Column 1 reports the results 

for grades 6-8, while column 2 reports results for grades 4 and 5.  In the grades 6-8, where 

teachers generally specialize by subject, those teaching other subjects are literally different 

people.  A positive coefficient implies that there is some evidence of “spillover”.  For instance, 

in middle school, when the quality of teaching improves in one subject, achievement does seem 

to improve in the other subject as well, by .282 standard deviations with a confidence interval of 

±20% (which excludes zero).  However, the coefficient on “own subject” remains at 1.078 with a 

confidence interval which includes one (implying that the changes in effectiveness in the other 

subject are not highly correlated with changes in effectiveness within a given subject).  In 

elementary school, the coefficient is .160, but more precisely estimated with a confidence 

interval of ±5%.  This is not surprising, since elementary teachers typically teach multiple 

subjects to the same students. Also, the coefficient on “own subject” falls significantly below 1 

to .904. However, this result reflects the fact that our predictions of teacher value-added in each 

subject only use information from the teacher’s performance in the same subject. In a more 

complete model of elementary teachers, the prediction of teacher value-added in each subject 

would depend on the teacher’s value-added in both subjects (Lefgren and Sims, 2012). Thus, 
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when we include other subject value-added in elementary, other subject value-added receives 

some weight while own subject value-added receives less weight. 

The change in predicted teacher effectiveness can arise from a number of different types 

of changes—changes in the proportion of students taught by each teacher in a grade and subject, 

teachers switching from one grade to another, or teachers exiting or entering a school.  The key 

assumption in the CFR methodology is that teachers are not sorting to students in the same way 

from year to year.  This seems safest to assume when a teacher leaves or enters a school, since 

the new teachers will typically be unfamiliar with the principal and students.  As a result, for the 

instrumental variable estimate in column 3, we instrument for ∆ܳ௦௚௦௧ by multiplying the fraction 

of students in the prior year’s school, grade, subject, year cell taught by teachers who leave the 

school by the mean effectiveness estimates of these leavers.  Therefore, the estimates in column 

3 of Table 4 are focusing on the variation in teacher effectiveness driven by teacher exit.  Still, 

the coefficient is not statistically different from one, .972, with a confidence interval of ±16%. 

The Lagged Score “Placebo” Test 

There is no control for the change in student baseline scores in equation (5).  Like CFR, 

we are effectively assuming that the change in predicted value-added is exogenous to any change 

in baseline achievement.  In a recent paper, Rothstein (2014) reports a statistically significant 

relationship between change in teacher value-added and changes in baseline achievement as 

prima facie evidence of bias in the CFR method.  When we replicate his analyses, we similarly 

find that the predicted change has a coefficient of .268 when lagged scores are the dependent 

variable.  However, rather than invalidating the CFR methodology, CFR (2014c) argue that the 

lagged score test merely demonstrates the hazards of using the same data to estimate the 
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dependent and independent variables.  There is a mechanical relationship between the two, 

which enters through two routes.  First, because teachers frequently switch grades in a school 

from one year to the next, the value-added predictions will be based on the some of the very 

same data included in the baseline scores.  CFR’s two-year leave-out window is designed to 

resolve this problem when ∆ܣ௦௚௦௧∗  is the dependent variable.  Rothstein reintroduces the problem 

when he uses ∆ܣ௦௚௦௧ିଵ
∗  as the dependent variable.  If a school sees a large improvement in the 

predicted value-added of teachers in grade g, some of the new teachers will have just taught 

grade g-1 in the previous year.  Second, Kane and Staiger (2002) document the existence of 

school by subject-year random effects, which could also produce a relationship between ∆ܳ௦௚௦௧ 

and ∆ܣ௦௚௦௧ିଵ
∗ . If these shocks are serially correlated, such a relationship could persist even with a 

three-year leave-out window. 

Accordingly, in Table 5, we replicate a number of specifications from both Rothstein and 

CFR to explore the relationships between changes in value-added and lagged scores.  The table 

reports the coefficients on the change in average value-added, ∆ܳ௦௚௦௧, with a range of different 

specifications.  For the specifications in the top row, the dependent variable is change in end-of-

year achievement, ∆ܣ௦௚௦௧∗ ; in the bottom row, the dependent variable is the change in lagged 

score (or baseline score), ∆ܣ௦௚௦௧ିଵ
∗ .  Across all of our specifications, we find that the coefficient 

is stable and indistinguishable from one when change in end-of-year achievement, ∆ܣ௦௚௦௧∗ , is the 

dependent variable.  However, we find that the coefficient is sensitive to the model specification 

when change in lagged achievement, ∆ܣ௦௚௦௧ିଵ
∗ , is the dependent variable.  

Column 1 replicates CFR’s preferred specification.  When the change in end of year 

scores is the dependent variable, the coefficient is indistinguishable from one.  When the change 
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in lagged scores is the dependent variable, the coefficient is .268, with a confidence interval of 

±8%.  In columns 2 and 3, we use a three-year leave-out window (leaving out the two prior years 

and the current year), which was the solution Rothstein (2014) proposed to solve the mechanical 

relationship introduced in his initial placebo test.  In column 2, the coefficient is .246 with a 

confidence interval of ±9%.  In column 3, we include fixed effects by school, year and subject, 

and the coefficient is 0.212, with a confidence interval of ±10%.  In columns 4 through 6, we 

present analyses suggested by CFR (2014c) to solve the mechanical relationship with lagged 

scores.  In column 4, we instrument for the change in value-added excluding those teachers who 

taught in the previous grade in the previous year.  The coefficient when change in lagged scores 

is the dependent variable remains statistically significant, but has fallen to .178.  In column 5, we 

add fixed effects by school, year and subject.  The coefficient when change in lagged scores is 

the dependent variable again falls to .105, although it remains statistically significant.  In column 

6, we instrument for the change in lagged score excluding teachers who ever switched grades 

within a school.  Under this final specification, the coefficient on lagged score is .049 with and a 

confidence interval of ±11% and is not statistically significant.   

In sum, throughout Table 5, all of the coefficients on end of year score are statistically 

significant and none are distinguishable from one, yet the coefficients on lagged score are much 

more sensitive to the model specification.  This leads us to conclude that any potential forecast 

bias suggested by this test is minimal and likely operating through a combination of teacher 

switching and shared school-by-year-by-subject effects.  When we take steps to adjust for these 

sources of a mechanical relationship, the coefficient on predicted value-added goes to zero when 

predicting baseline scores, but remains equal to one in predicting end of year scores. 

Are Teacher Value-Added Estimates Context-Specific? 
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Even if value-added estimates are unbiased predictors within a given school environment, 

the same teacher could be more or less effective in a different school.  Using data from North 

Carolina, Jackson (2013) estimates that teacher-school match effects account for roughly one-

third of the variance in teacher effects.  To test the possibility that teacher effects vary by 

context, we first divide the data available for each teacher’s value-added into value-added 

estimates using observations only from the same school and those from all available schools.  

Suppose ̂ߤ௝,௦௔௠௘
ିሼ௧,௧ିଵሽ represents the teacher effect estimate for teacher j using only data from the 

same school and ̂ߤ௝,௔௟௟
ିሼ௧,௧ିଵሽ the estimates from the full dataset.  Because data from the same school 

are just a subset of the data from all schools, the law of iterated expectations implies that 

௝,௦௔௠௘ߤ̂
ିሼ௧,௧ିଵሽ  and   ̂ߤ௝,௔௟௟

ିሼ௧,௧ିଵሽ െ	 ௝,௦௔௠௘ߤ̂
ିሼ௧,௧ିଵሽ	are orthogonal, and the latter term represents the component 

of ̂ߤ௝,௔௟௟
ିሼ௧,௧ିଵሽ that reflects the additional information from teacher performance in others schools.   

Therefore, in Table 6, we include both ̂ߤ௝,௦௔௠௘
ିሼ௧,௧ିଵሽ  and   ̂ߤ௝,௔௟௟

ିሼ௧,௧ିଵሽ െ	 ௝,௦௔௠௘ߤ̂
ିሼ௧,௧ିଵሽ.   Consistent with 

Jackson’s findings regarding teacher-school matches, the point estimate on value-added estimate 

of the same school, 1.054, is larger than the coefficient on the difference between that from all 

schools and similar schools, .817.   However, we cannot reject the hypothesis that both 

coefficients were equal to one (p value=.163).   

In column 2 of Table 6, we divide the data for each teacher and year into three 

sequentially nested groups:  data from the same school, data from the same or similar schools 

(with mean scores within .1 standard deviations) and data from all schools.  We use such data to 

create three orthogonal variables: ̂ߤ௝,௦௔௠௘
ିሼ௧,௧ିଵሽ, ̂ߤ௝,௦௜௠௜௟௔௥

ିሼ௧,௧ିଵሽ െ	 ௝,௦௔௠௘ߤ̂
ିሼ௧,௧ିଵሽ	 and ̂ߤ௝,௔௟௟

ିሼ௧,௧ିଵሽ െ	 ௝,௦௜௠௜௟௔௥ߤ̂
ିሼ௧,௧ିଵሽ .  

Again, the coefficient on the teacher effect estimates from the same school, 1.054, is larger than 

the coefficient on latter two differences, .760 and .838.  Nevertheless, we cannot reject the 
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hypothesis that the coefficients were all equal to one (p-value=.275).  In other words, we cannot 

reject the hypothesis that a teacher’s value-added estimate from a different school or from a 

school with considerably higher or lower mean test scores were equally predictive of their 

students’ achievement. 

The Distribution of Teaching Effectiveness (Including Teaching Experience) 

 A central question in current policy debate is the degree to which different groups of 

students have access to the same quality teaching.  For instance, in Vergara v. California, the 

plaintiffs argued that the least effective teachers were disproportionately assigned to low-income, 

minority and lower achieving students.  When testing for differences in mean teacher 

effectiveness by student characteristics, the empirical challenge is to disentangle systematic 

differences in teacher quality from the direct effects of those same student characteristics. For 

instance, if one were to estimate equation (1) without teacher fixed effects, and included class-

level or school-level mean baseline achievement among the covariate controls, X, there would be 

no relationship between teacher value-added and the covariates in X. However, this would be 

true by construction, since value-added is calculated as the residual from equation (1).  An 

important strength of the CFR methodology is that by including teacher fixed effects in equation 

(1), they preserve the possibility that teacher effects could be correlated with the covariate 

controls, X. 

Following CFR, Table 7 uses the teacher effect estimates, ̂ߤ௝௧, as the dependent variable 

and estimates the relationship between teacher effectiveness and observable student 

characteristics both at the student-level and the school-level.  Column 1 presents estimates of the 

relationship between teacher effect estimates, ̂ߤ௝௧, and student-level prior-year test scores, ܣ௜,௧ିଵ
∗ .  
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The point estimate of .024 is statistically significant, and implies that a one-standard deviation 

increase in prior achievement is associated with being assigned a teacher with .024 higher 

predicted effectiveness.  In other words, rather than being used to narrow achievement gaps, 

teacher assignments in Los Angeles exacerbate prior achievement differences, with weaker 

students being assigned weaker teachers.  The point estimate is roughly three times as large as 

the point estimate observed by CFR. 

In column 2, we include fixed effects by school when estimating the relationship between 

teacher effect estimates, ̂ߤ௝௧, and student-level prior-year test scores, ܣ௜,௧ିଵ
∗ .  With school fixed 

effects included, the estimates are based on differences within school.  The point estimate of .013 

is statistically significant, but smaller than the estimate without school fixed effects.  The results 

presented in columns 1 and 2 imply that students with higher prior-year test scores are a) in 

schools with higher value-added teachers and b) that within schools, students with relatively 

higher prior-year test scores (than other students in that same school) are placed with teachers 

with relatively higher value-added (than other teachers in that same school).   

In column 3, we present the analogous estimates by student race/ethnicity.  Relative to 

white students, African-American, Asian, and Hispanic students in Los Angeles are assigned less 

effective teachers, on average.  African-American students are assigned teachers with average 

value-added .030 student-level standard deviations below the average of teachers to whom white 

students are assigned.  In other words, the average African-American student in Los Angeles is 

losing .030 standard deviations in achievement each year relative to white students with similar 

prior achievement, because of the lower effectiveness of the teachers to which they are assigned.  

Latino students, who comprise 75% of students in Los Angeles, are losing .043 standard 
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deviations per year relative to similar white students in Los Angeles, because of the teachers they 

are assigned.   

In column 4, we present the results by race/ethnicity after adding fixed effects by school.  

The estimates are statistically significant and negative for African-American and Latino students, 

but they are much smaller, -.010 rather than -.030 and -.043 respectively.10  In other words, much 

of the difference in teacher quality by race/ethnicity is due to the mal-distribution of teacher 

effectiveness between schools, although there is still evidence that African-American and Latino 

students are assigned less effective teachers within the same schools.  The results also imply that 

the difference between white and Asian students is entirely due to between-school differences.  

Within schools, the white-Asian difference is not statistically significant. 

Column 5 illustrates a similar point by regressing teacher value-added against the fraction 

of students in each school in various racial/ethnic groups.  Schools with more African-American 

and Latino students have lower teacher quality, on average. 

 One weakness in the CFR methodology is that in estimating, ̂ߤ௝௧, they take no account of 

teaching experience.  However, in many school districts, teachers start their careers teaching 

more disadvantaged students and, as they gain experience, move to teaching higher income and 

higher-achieving students (Boyd, Loeb and Wyckoff, 2008; Kalgorides, Loeb and Beteille, 2013; 

Jackson, 2013).  Value-added estimates typically rise sharply during teachers’ first several years 

of teaching and then flatten out afterward.  Failing to account for teacher underperformance 

during the early years of teaching may understate the differences in teacher quality for more and 

less advantaged students. 

                                                            
10 As CFR note, these estimates understate the differences in true value-added across groups since the dependent 
variable is a ‘shrunken’ estimate of true teacher value-added.   
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 To investigate this possibility, we re-estimate equation (1) including 10 indicators of a 

teacher’s number of years of experience (we used an indicator variable for each of the first nine 

years of experience and one indicator for all teachers with 10 or more years of experience).  

Instead of using ̂ߤ௝௧ as the dependent variable, the top panel of Table 8 uses the teachers’ 

experience multiplied by the relevant experience effect as the dependent variable.  As reported in 

column 1, there is a .017 standard deviation difference in teacher effectiveness per standard 

deviation in student baseline achievement based simply on teaching experience.  Analogously, 

African-American and Latino students are losing .039 and .018 standard deviations respectively 

relative to white students based simply on the differential in the average experience of their 

teachers.  Most of the experience effects seem to be operating at the school level, as only the 

difference associated with the baseline achievement, .004, is statistically significant after 

including school effects in columns 2 and 4. 

 In the bottom panel of Table 8, we use the sum of the adjusted teacher effects, ̂ߤ௝௧, 

(which have been re-estimated to adjust for the teacher experience effects) and the experience 

effects as the dependent variable.  While ̂ߤ௝௧ may be useful for summarizing the differences in 

“teacher” effectiveness, the sum of ̂ߤ௝௧ and the experience effects is a better measure of the 

difference in “teaching effectiveness”—acknowledging the fact that the average teacher 

improves during their initial years of teaching.  The combined effects are substantially larger 

than in Table 7.  Rather than a .024 difference in teacher effectiveness per standard deviation in 

baseline performance, the difference is .042 standard deviations in teaching effectiveness, once 

experience effects are included.  The deficit in teaching effectiveness for African American and 

Latino students relative to white students is .069 and .063 standard deviations respectively. 
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Conclusion  

 There is now substantial evidence that non-experimental teacher effect measures (often 

called “value-added” measures) capture important information about the causal effects of 

teachers on student achievement.  Since 2008, three studies using random assignment in different 

sites have confirmed the validity of teacher-level value-added estimates (Kane and Staiger, 2008; 

Kane, McCaffrey, Miller and Staiger, 2013; Glazerman, Protik, Teh, Bruch, Max, and Warner, 

2013).  In addition, the CFR methodology has produced little evidence of bias in three sites so 

far:  New York City, Los Angeles and North Carolina.  Rarely in social science have we seen 

such a large number of replications in such a short period of time.  Even more rare is the high 

degree of convergence in the findings.    

Despite the lack of evidence of prediction bias, questions linger in three areas:   

 First, we have much to learn about the role of school context and “match quality” in 

teacher effect estimates.  Although we cannot rule out the hypothesis that teacher effect estimates 

derived from a teacher’s experience in another school were equally valid predictors as the same-

school estimates, we have too little power to rule out Jackson’s (2013) findings on the 

importance of match quality as a component of teacher effectiveness. 

 Second, the field must narrow the range of statistical specifications which practitioners 

should expect to yield valid predictions.  For instance, it has become conventional among 

economists to condition on classroom and school mean characteristics when estimating value-

added models.  However, very few district or state systems currently include controls for peer 

effects when generating value-added estimates for their employment and pay decisions.  

Unfortunately, we have little statistical power using the CFR method to test the importance of 
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peer controls simply because of the limited variation in peer control variables when aggregated at 

the school-by-year level.  We need more studies specifically designed to test for the importance 

of peer controls and other specification decisions. 

 Finally, although none of the validity studies so far have produced evidence of bias, we 

know very little about how the validity of the value-added estimates may change when they are 

put to high stakes use.  All of the available studies have relied primarily on data drawn from 

periods when there were no stakes attached to the teacher value-added measures.  In the coming 

years, it will be important to track whether or not the measures maintain their predictive validity 

as they are used for tenure decisions, teacher evaluations and merit pay. 
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Table 1. Summary Statistics       

  Mean SD Observations 

Dataset Characteristics: 

Number of subject-school years per student 5.08 2.91 591,803

Class size (not student-weighted) 24.37 6.25 141,853

Student Characteristics: 

Test Score (student-level standard deviation units) 0.13 0.98 3,008,965

Male 49.55% 0.50 3,009,024

African-American 9.01% 0.29 3,009,024

Asian 6.79% 0.25 3,009,024

Hispanic 75.11% 0.43 3,009,024

White 9.09% 0.29 3,009,024

Repeating Grade 0.07% 0.03 3,009,024

Free or Reduced Price Lunch Eligible 77.63% 0.42 3,009,024

Homeless 1.08% 0.10 3,009,024

Mild SPED 4.82% 0.21 3,009,024

Severe SPED 1.21% 0.11 3,009,024

ELL - Reclassified to Fluent English Proficient 29.93% 0.46 3,009,024

ELL - Limited English Proficient 28.32% 0.45 3,009,024

ELL - Initially Fluent English Proficient 12.17% 0.33 3,009,024

Notes: This sample of students and teachers is limited to those with the requisite information for estimating 
value-added (e.g., students must have prior-year test scores).  For more discussion of these sample 
restrictions, see the sample restrictions section of the paper. 
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Table 2. Quasi-Experimental Estimates of Forecast Bias 

Same Subject 

  b / (se) b / (se) b / (se) b / (se) b / (se) 

Changes in mean teacher VA across cohorts 1.030 1.122 0.996 0.963 0.942 

(0.044) (0.131) (0.037) (0.048) (0.055) 

Year Fixed Effects Yes Yes Yes 

School-by-Year Fixed Effects Yes Yes 

Lagged and Forward Teacher VA Yes 

Grades 4 to 8 6 to 8 4 and 5 4 to 8 4 to 8 

N 14,186  3,434  10,752  14,186  9,170  

Notes: Each column reports coefficients and standard errors (in parentheses) from an OLS regression, where the dependent variable is the 
change in mean test scores within a school-grade-subject cell from the prior year to the current year.  Standard errors are clustered at the 
school-cohort level.  The regressions are estimated in a dataset aggregated to school-grade-subject-year cells and weighted by the number 
of students in the school-grade-subject-year cell.  Classrooms in which two-year leave-out value-added estimates cannot be constructed are 
excluded. 
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Table 3. Quasi-Experimental Estimates of Forecast Bias Robustness Check: Sensitivity to Missingness 

Missing VA 
Excluded 

(Main 
Model) 

Missing VA 
set to 0  

Missing VA 
Imputed by 

Teaching 
Experience 

Missing VA 
set to -.049 
(average 

residual of 
teachers with 

missing 
leave-out 

VA)  

Only Cells 
with No 

Teachers 
Missing VA 

  b/ (se) b/ (se) b/ (se) b/ (se) b/ (se) 
Changes in mean teacher VA across 
cohorts 1.030 0.993 0.996 0.998 0.973 

(0.044) (0.049) (0.048) (0.049) (0.048) 
Year Fixed Effects Yes Yes Yes Yes Yes 

N 14,186  14,292  14,292  14,292  8,974  

Notes: Each column reports coefficients and standard errors (in parentheses) from an OLS regression, where the dependent variable is the change in 
mean test scores within a school-grade-subject cell from the prior year to the current year.  Standard errors are clustered at the school-cohort level.  The 
regressions are estimated in a dataset aggregated to school-grade-subject-year cells and weighted by the number of students in the school-grade-subject-
year cell.  Column 1 repeats the same specification reported in column 1 of Table 2, which excludes teachers for whom two-year leave-out value-added 
estimates cannot be constructed.  Column 2 includes these teachers, by setting their VA to 0, the full-sample VA mean.  Column 3 includes these 
teachers by imputing VA based on experience. Column 4 includes these teachers by setting their VA to -0.49, which is the average VA of teachers for 
whom two-year leave-out VA cannot be calculated.  Column 5 includes only cells where no teachers are missing two-year leave-out value-added 
estimates. 
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Table 4. Additional Robustness Checks: Predicted Effectiveness in Other Subjects and Using Teacher Exit as an 
Instrument 

Other Subject 
Teacher Exit 

Only (IV) 

  b / (se) b / (se)   b / (se) 

Changes in mean teacher VA across cohorts 1.078 0.904 0.972 

(0.126) (0.031) (0.082) 

Change in mean teacher other subject VA across cohorts 0.282 0.160 

(0.100) (0.026) 

Year Fixed Effects Yes Yes Yes 

Grades 6 to 8 4 and 5 4 to 8 

N 3,394  10,752    14,186  

Notes: Each column reports coefficients and standard errors (in parentheses) from an OLS regression (columns 1 and 2) or a 2SLS regression (column 3), 
where the dependent variable is the change in mean test scores within a school-grade-subject cell from the prior year to the current year.  Standard errors 
are clustered at the school-cohort level.  The regressions are estimated in a dataset aggregated to school-grade-subject-year cells and weighted by the 
number of students in the school-grade-subject-year cell.  Classrooms in which two-year leave-out value-added estimates cannot be constructed are 
excluded.  Columns 1 and 2 restrict the sample to middle school and elementary school, respectively and control for other subject changes in mean teacher 
VA across cohorts in addition to same subject.  Column 3 reports estimates from a 2SLS regression, instrumenting for changes in mean teacher VA with 
the fraction of students in the prior cohort taught by teachers who leave the school multiplied by the mean VA among those teachers. 
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Table 5. The Lagged Score Placebo Test 

Baseline  
Model (Two-
Year Leave-

Out)  

Baseline Model 
with Three-
Year Leave-

Out  
No Followers  

(IV) 

No Within-
School 
Movers  

(IV) 

Dependent Variable: b / (se)  b / (se) b / (se)  b / (se) b / (se)  b / (se) 

Change in Current Score 1.030 0.991 0.964 0.995 0.950 0.963 
(0.044) (0.048) (0.060) (0.049) (0.042) (0.056) 

Change in Lagged Score 0.268 0.246 0.212 0.178 0.105 0.049 
(0.039) (0.043) (0.053) (0.044) (0.041) (0.055) 

Year Fixed Effects Yes Yes Yes 
School x Year x Subject Fixed Effects Yes Yes Yes 
N 14,186   14,186 14,186  14,186 14,186  14,186  

Notes: Each column reports coefficients and standard errors (in parentheses) from an OLS (columns 1-3) or a 2SLS (columns 4-6) regression, where the 
dependent variable is the change in mean test scores within a school-grade-subject cell from the prior year to the current year.  Standard errors are clustered 
at the school-cohort level.  The regressions are estimated in a dataset aggregated to school-grade-subject cells and weighted by the number of students in 
the school-grade-subject-year cell.  Classrooms in which two-year leave-out value-added estimates cannot be constructed are excluded.  Column 1 repeats 
the same specification reported in column 1 of Table 2, which includes all teachers for whom two-year leave-out value-added estimates exist.  Columns 2 
and 3 also repeat the same specification reported in column 1 of Table 2, but exclude an additional prior year of data (i.e., t-2, t-1, and t are excluded, 
instead of just t-1 and t).  Columns 4 and 5 report estimates from a 2SLS regression, instrumenting for changes in mean teacher VA with the changes in 
mean VA excluding teachers who switch from the previous grade to current grade (i.e., they 'follow' the students).  Column 6 reports estimates from a 
2SLS regression, instrumenting for changes in mean teacher VA with the changes in mean VA excluding teachers who switch across grades within a 
school. 
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Table 6. Predicted Effectiveness from Using Estimates from Same, Similar, and Different Schools 

  b / (se) b / (se) 
VA Same School 1.054 1.053 

(0.046) (0.046) 
(VA All Schools) - (VA Same School) 0.817 

(0.125) 
(VA Similar Schools) - (VA Same School) 0.760 

(0.318) 
(VA All Schools) - (VA Similar Schools) 0.838 

 
(0.124) 

 
Joint Test That All Coefficients Equal 1 (p-value) (0.163) (0.275) 
Year Fixed Effects Yes Yes 
N 14,182  14,182  

Notes: Each column reports coefficients and standard errors (in parentheses) from an OLS regression, where the dependent 
variable is the change in mean test scores within a school-grade-subject cell from the prior year to the current year.  Standard 
errors are clustered at the school-cohort level.  The regressions are estimated in a dataset aggregated to school-grade-subject-
year cells and weighted by the number of students in the school-grade-subject-year cell.  Classrooms in which two-year leave-
out value-added estimates cannot be constructed are excluded.  Column 1 divides the data available for a teacher's value-added 
into information from when a teacher was in the same school and information from all other schools.  Column 2 divides the data 
available for a teacher's value-added into information from when a teacher was in the same school, a similar school, and all other 
schools.  Similar schools are defined as schools with mean test scores within 0.1 standard deviation units.  The third-to-last row 
presents the p-value from an F-test of all coefficients in the corresponding column being jointly equal to 1. 
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Table 7. Differences in Teacher Quality Across Students and Schools   

  b / (se) b / (se) b / (se) b / (se) b / (se) 
Lagged Test Score 0.024 0.013 

(0.001) (0.001) 
African-American -0.030 -0.010 

(0.004) (0.001) 
Asian -0.013 0.005 

(0.003) (0.001) 
Hispanic -0.043 -0.010 

(0.003) (0.001) 
School Fraction African-American -0.073 

(0.015) 
School Fraction Asian -0.076 

(0.025) 
School Fraction Hispanic -0.109 

(0.011) 
School Fixed Effects Yes Yes 
Mean School FRPL Quartile 
R-sq 0.017 0.133 0.006 0.129 0.011 

N 
2,794,81

8  
2,794,81

8  
2,794,81

8  
2,794,81

8  
2,794,81

8  

Notes: Each column reports coefficients and standard errors (in parentheses) from an OLS regression, where the 
dependent variable is the estimated teacher value-added using our baseline model (see Table 2, column 1). 
Standard errors are clustered at the teacher level.  The regressions are estimated in a dataset at the student-subject-
year level. 
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Table 8. Differences in Teacher Quality Across Students and Schools, Accounting for 
Teacher Experience 
Panel A: Dependent Variable is Teacher Experience * Experience Coefficient  
  b / (se) b / (se) b / (se) b / (se) b / (se) 
Lagged Test Score 0.017 0.004 

(0.003) (0.002) 
African-American -0.039 -0.005 

(0.011) (0.004) 
Asian 0.018 0.007 

(0.009) (0.003) 
Hispanic -0.018 -0.000 

(0.011) (0.004) 
School Fraction African-American -0.092 

(0.046) 
School Fraction Asian 0.188 

(0.077) 
School Fraction Hispanic -0.015 

(0.035) 
School Fixed Effects Yes Yes 
R-sq 0.001 0.343 0.001 0.343 0.002 
N 2,897,425 2,897,425 2,897,425  2,897,425  2,897,425 
Panel B: Dependent Variable is (Teacher VA with Experience Controls) + (Experience * 
Experience Coefficient) 
  b / (se) b / (se) b / (se) b / (se) b / (se) 
Lagged Test Score 0.042 0.016 

(0.003) (0.002) 
African-American -0.069 -0.015 

(0.012) (0.004) 
Asian 0.005 0.012 

(0.010) (0.003) 
Hispanic -0.063 -0.010 

(0.011) (0.004) 
School Fraction African-American -0.161 

(0.050) 
School Fraction Asian 0.106 

(0.082) 
School Fraction Hispanic -0.131 

(0.038) 
School Fixed Effects Yes Yes 
R-sq 0.006 0.338 0.002 0.337 0.005 
N 2,689,580 2,689,580 2,689,580  2,689,580  2,689,580 

Notes: Each column reports coefficients and standard errors (in parentheses) from an OLS regression. Standard errors 
are clustered at the teacher level.  The regressions are estimated in a dataset at the student-subject-year level.  In Panel 
A, the dependent variable is Teacher Experience * Experience Coefficient.  We obtain the relevant experience 
coefficient by re-specifying equation (1) with controls for teaching experience.  In Panel B, the dependent variable is 
the sum of teacher value-added (controlling for teacher experience) and the experience effects from Panel A. 
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Figure 1. 
 

 
 
Notes: This figure plots kernel densities of the empirical distribution of predicted teacher effects for elementary 
school teachers.  The densities are weighted by class size and are estimated using the Epanechnikov kernel with a 
bandwidth of .03. We also report the standard deviations of these empirical distributions of VA estimates, which are 
shrunken toward the mean to account for noise. 
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Figure 2. 
 

  
 
Notes: This figure plots kernel densities of the empirical distribution of predicted teacher effects for middle school 
teachers.  The densities are weighted by class size and are estimated using the Epanechnikov kernel with a 
bandwidth of .03. We also report the standard deviations of these empirical distributions of VA estimates, which are 
shrunken toward the mean to account for noise. 
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Figure 3. 
 

 
 
Notes: These figures show the correlation between mean test-score residuals across classes taught by the same 
teacher indifferent years. The top panel plots autocorrelation vectors and the bottom panel plots autocorrelation 
vectors for middle school. See CFR 2014a Appendix A for details on this estimation procedure. 
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Figure 4. 
 

 
 

Notes: This figure presents a binned scatter plot and fitted line of changes in mean actual test scores versus changes 
in mean teacher predicted changes in VA across cohorts, which corresponds to the regression in column 1 of Table 2 
(see Table 2 for details on the model). To construct these binned scatter plots, we follow the procedure detailed in 
CFR of first demeaning both the x- and y-axis variables by school year to eliminate any secular time trends. We then 
divide the observations into vingtiles based on their change in mean VA and plot the means of the y variable within 
each bin against the mean change in VA within each bin, weighting by the number of students in each school-grade-
subject-year cell. The solid line shows the best linear fit estimated on the underlying micro data, which is presented 
in Table 2, column 1. 


